
Systematic Encoding of Elliptic Codes with
Dynamic Information Sets

Jianguo Zhao†, Li Chen‡
† School of System Science and Engineering, Sun Yat-sen University, Guangzhou, China

‡ School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
Email: zhaojg5@mail2.sysu.edu.cn, chenli55@mail.sysu.edu.cn

Abstract—Systematic encoding is crucial in some decoding al-
gorithms of algebraic-geometric (AG) codes. In the context of soft
decoding that requires systematic encoding, the information set
changes dynamically for each decoding event, presenting a chal-
lenge for systematic encoding of AG codes. This paper addresses
this challenge for elliptic codes by proposing a fast construction
algorithm for both the systematic encoding polynomial (SEP) and
the systematic generator matrix (SGM) based on Gröbner bases
of modules and backward interpolation. The proposed algorithm
has a complexity of O(k2) and O(kn) for constructing the SEP
and SGM, respectively, where k and n denote the dimension and
length of the elliptic code. Additionally, its computation can be
highly parallelized, enhancing its implementation efficiency.

Index Terms—Algebraic-geometric codes, backward interpola-
tion, elliptic codes, Gröbner bases, systematic encoding

I. INTRODUCTION

Algebraic-geometric (AG) codes are a generalization of
the widely-used Reed-Solomon (RS) codes. Constructed from
curves of genus one, elliptic codes are a class of AG codes
that are almost maximum distance separable (MDS) and can
be longer than RS codes. Therefore, they offer a good tradeoff
between length and distance, which contributes to their poten-
tial to replace RS codes in future applications. Decoding of
AG codes includes syndrome-based [1]–[3] and interpolation-
based approaches [4]. Additionally, information set decoding
for general linear codes can also be applied.

In some decoding algorithms, systematic encoding plays an
important role. For example, erasure-only decoding can be
realized through systematic encoding with the unerased posi-
tions [5] [6]. The re-encoding transform (ReT) [7] constructs
a systematic encoding polynomial (SEP) based on the most
reliable received symbols, transforming the received word
and significantly reducing the complexity of interpolation-
based decoding [7]–[10]. Moreover, systematic encoding is
indispensable for information set decoding. For example, the
ordered statistics decoding (OSD) [11] utilizes a systematic
generator matrix (SGM) defined by the most reliable indepen-
dent positions (MRIPs) to generate codeword candidates.

In the context of soft decoding that requires systematic
encoding, the positions of information symbols depend on the
reliabilities of received symbols. As a result, the information
set changes dynamically for each decoding event, presenting
a challenge for constructing the SEP or SGM for AG codes.
Although general linear algebra provides Gaussian elimination

(GE) as a solution, it is inefficient due to its cubic complexity
and sequential operation.

Few studies have addressed systematic encoding of AG
codes [6] [12] [13], and most of them did not consider the
dynamic information set. The ReT for elliptic codes [8] [14]
was proposed by using the Lagrange interpolation, where the
interpolation points associated with the information set are
required to form a semi-grid (Definition III). However, this
requirement cannot always be met by the information set
consisting of MRIPs. An algorithm for inverting the encoding
map [15] was introduced for certain AG codes. It starts with
the Lagrange interpolation and further reduces the interpola-
tion polynomial to a message polynomial through multivariate
division by a Gröbner basis. Although not specified, it can lead
to an SEP construction algorithm.

This paper proposes a fast construction algorithm for the
SEP and SGM of elliptic codes with dynamic information
sets. It is shown that both the constructions can be reduced to
determining a set of Gröbner bases. Given an information set
Jk of an (n, k) elliptic code, the proposed algorithm first com-
putes a Gröbner basis GJk

of the constrained submoduleMJk

associated with Jk. Subsequently, the backward interpolation
[16] [17] is used to derive the desired Gröbner bases from
GJk

. The proposed algorithm yields a complexity of O(k2)
and O(kn) for constructing the SEP and SGM, respectively.
Its computation can be highly parallelized, exhibiting an
advantageous implementation feature.

II. PRELIMINARIES

A. Elliptic Codes

Over finite field Fq , an affine elliptic curve X is defined by
the following equation

X : Y 2 + γ1XY + γ3Y = X3 + γ2X
2 + γ4X + γ6, (1)

where γ1, γ2, γ3, γ4, γ6 ∈ Fq . The genus of X is 1. Let X (Fq)
denote the set of rational points on X . Based on the Hasse-
Weil bound, |X (Fq)| ⩽ q + ⌊2√q⌋ + 1. The rational points
consist of a set of affine points P = {Pj = (αj , βj) : j =
1, 2, ..., n} and a point at infinity P∞, i.e., X (Fq) = P∪{P∞}.
They form an additive Abelian group with P∞ as the identity
element [18]. For any Pj ∈ P , there exists Ps[j] = (αj ,−βj−
γ1αj − γ3) ∈ P , s.t. Pj + Ps[j] = P∞ under the “chord-and-

2023 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-7554-9/23/$31.00 ©2023 IEEE 2075

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
In

fo
rm

at
io

n
Th

eo
ry

 (I
SI

T)
 |

97
8-

1-
66

54
-7

55
4-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

IT
54

71
3.

20
23

.1
02

06
53

1

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 06,2023 at 01:16:53 UTC from IEEE Xplore. Restrictions apply.

tangent” rule. Note that Pj and Ps[j]
1 are the only points with

the same X-coordinate in P .
Let Fq(X) denote the function field of X . For any a, b ⩾ 0,

xayb ∈ Fq(X) has poles only at P∞ with an order of −2a−3b.
Furthermore, any f =

∑
a⩾0

∑
b⩾0 fa,bx

ayb ∈ Fq[x, y]\{0}
has poles only at P∞ and the pole order is equal to its (2, 3)-
weighted degree deg2,3 f = maxa,b{2a + 3b : fa,b ̸= 0}.
Based on (1), every f ∈ Fq[x, y] with y-degree degy f ⩾ 2
can be uniquely rewritten as another bivariate polynomial f ′ ∈
Fq[x, y] with degy f

′ < 2. Hence, Fq[x, y] is equivalent to the
following set:

Fq[x][y]2 ={f(x, y) ∈ Fq[x, y] : degy f < 2}
={f[0](x) + f[1](x)y : f[0], f[1] ∈ Fq[x]},

which is a free module over Fq[x] with basis {1, y}.
Armed with the above prerequisites, the Riemann-Roch

space associated with divisor k[P∞] can be represented as

L(k[P∞]) = {f ∈ Fq[x][y]2 : deg2,3 f ⩽ k}. (2)

This paper only considers 0 < k < n, for which L(k[P∞])
has a dimension of k over Fq .

Definition I ([19]). An (n, k) (one-point evaluation) elliptic
code CL(P, k) is defined as the image of L(k[P∞]) under the
evaluation map

E : L(k[P∞])→ Fn
q

f 7→ (f(P1), f(P2), ..., f(Pn)).

Note that the minimum distance d of CL(P, k) satisfies
d ⩾ n− k, and the map E is bijective for 0 < k < n.

B. Gröbner Bases of Modules

The Gröbner basis theory can be used to solve the follow-
ing multivariate polynomial interpolation problem in module
Fq[x][y]2.

Problem 1. Given a set of codeword symbol postitions J ⊆
{1, 2, ..., n}, find a nonzero polynomial Q ∈ Fq[x][y]2, s.t.
Q(Pj) = 0,∀j ∈ J and deg2,3 Q is minimal.

Let PJ = {Pj : j ∈ J} denote the set of interpolation
points in Problem 1. It defines a submodule of Fq[x][y]2 as

MJ = {Q ∈ Fq[x][y]2 : Q(Pj) = 0,∀j ∈ J}.

By ordering polynomials in Fq[x][y]2 according to their (2, 3)-
weighted degree, the solution to Problem 1 will be the minimal
element ofMJ , which is contained in a Gröbner basis ofMJ .

Definition II. Given f, f ′ ∈ Fq[x][y]2, f < f ′ w.r.t. order
<2,3 if deg2,3 f < deg2,3 f

′.
Since 2 and 3 are coprime, any f ∈ Fq[x][y]2 has a well-

defined leading monomial LM2,3f = maxa,b{xayb : fa,b ̸=
0} under <2,3. Then, the Gröbner basis ofMJ w.r.t. <2,3 can
be determined using the following criterion.

Proposition 1 ([20]). A polynomial set G is a Gröbner basis
of MJ w.r.t. <2,3 iff it satisfies:

1) G = {Q(0), Q(1)};
1There may exist j ∈ {1, 2, ..., n}, s.t. s[j] = j.

2) MJ = ⟨G⟩ := {h0Q
(0) + h1Q

(1) : h0, h1 ∈ Fq[x]};
3) degy LM2,3Q

(0) ̸= degy LM2,3Q
(1).

Let GJ denote the Gröbner basis of MJ . Under the order
<2,3, the minimal element of MJ is equivalent to that of
GJ . Therefore, Problem 1 can be solved by computing GJ . To
achieve this, Kötter’s interpolation [21] can be utilized. It first
initializes a Gröbner basis {1, y} of the unconstrained module
Fq[x][y]2. Then, the interpolation constraints given by PJ are
imposed on the Gröbner basis one by one using Algorithm 1,
where F∆(0),∆(1) is a map defined as

Fδ0,δ1 : Fq[x][y]2 × Fq[x][y]2 → Fq[x][y]2

Fδ0,δ1(φ0, φ1) =


φ0, if δ0 = 0 and δ1 ̸= 0

φ1, if δ0 ̸= 0 and δ1 = 0

φ0 − δ0
δ1
φ1, if δ0 ̸= 0 and δ1 ̸= 0

for δ0, δ1 ∈ Fq that are not all zeros.

Algorithm 1: Kötter’s Basis Update (BasisUpdate)

Input: G = {Q(0), Q(1)}, P = (α, β) ∈ P
Output: G

1 for l = 0, 1 do
2 ∆(l) ← Q(l)(P);
3 if ∆(l) = 0,∀l then stop;
4 l∗ ← argminl{Q(l) : ∆(l) ̸= 0};
5 G ← {F∆(0),∆(1)(Q(0), Q(1)), (x− α)Q(l∗)};

Based on Algorithm 1, Kötter’s interpolation can be sum-
marized as follows.

Algorithm 2: Kötter’s Interpolation (KötterInterp)
Input: P, J
Output: G

1 G ← {1, y};
2 for j ∈ J do
3 G ← BasisUpdate(G, Pj);

The following Lemma 2 characterizes a bound on the (2, 3)-
weighted degree for the elements of GJ .

Lemma 2. Let G(−)
J and G(+)

J denote the minimal and
maximal element of GJ w.r.t. <2,3, respectively. Their (2, 3)-
weighted degree satisfy i) |J | ⩽ deg2,3 G

(−)
J ⩽ |J |+1 and ii)

deg2,3 G
(+)
J ⩽ deg2,3 G

(−)
J + 3. 2

III. PROBLEM FORMULATION

Given a message u = (u1, u2, ..., uk) ∈ Fk
q , the systematic

encoder of CL(P, k) with information set Jk = {j1, j2, ..., jk}
generates a codeword c = (c1, c2, ..., cn), s.t. cj = ui[j],∀j ∈
Jk, where i[j] denotes the index of j in Jk, i.e., i[ji] = i for i =
1, 2, .., k. Since the evaluation map E in Definition I is bijective
for 0 < k < n, there exists a unique message polynomial
F ∈ L(k[P∞]) called the SEP, s.t. E(F) = c. Systematic
encoding of CL(P, k) can be realized through finding the SEP
F and computing the evaluation image E(F) of F .

2Due to space limitations, the proofs of this lemma and any subsequent
propositions are omitted.

2023 IEEE International Symposium on Information Theory (ISIT)

2076
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 06,2023 at 01:16:53 UTC from IEEE Xplore. Restrictions apply.

Problem 2. Given an information set Jk of CL(P, k) and
a message u ∈ Fk

q , find a polynomial F ∈ Fq[x][y]2, s.t.
F(Pj) = ui[j],∀j ∈ Jk and deg2,3 F ⩽ k.

Since L(kP∞) has dimension k over Fq , F can be repre-
sented as an Fq-linear combination of k basis polynomials of
L(kP∞). Particularly, there exists a set of systematic encoding
basis polynomials (SEBPs) {Qj ∈ L(kP∞) : j ∈ Jk}, s.t.

F =
∑
j∈Jk

ui[j]Qj . (3)

Hence, Problem 2 can be solved by finding these SEBPs.
Problem 3. Given an information set Jk of CL(P, k), find

polynomials Qj ∈ Fq[x][y]2 for all j ∈ Jk, s.t.{
Qj(Pj) = 1,

Qj(Pj′) = 0,∀j′ ∈ Jk\{j},
(4)

and deg2,3Qj ⩽ k.
Note that each Qj is a solution to the special case of

Problem 2 with ui[j] = 1 and ui[j′] = 0, ∀j′ ∈ Jk\{j}. The
evaluation images E(Qj1), ...,E(Qjk) form the SGM GJk

of
CL(P, k) with the information set Jk, where GJk

= (gi[j],i)
and gi[j],i = Qj(Pi) for j ∈ Jk and i ∈ {1, 2, ..., n}.

Due to its uniqueness, Qj is the minimal polynomial that
satisfies (4). In addition, for any γ ∈ Fq\{0}, Qj = γQj has
deg2,3 Qj = deg2,3Qj . Hence, Qj can be obtained by finding
Qj and computing Qj = Qj/γ = Qj/Qj(Pj).

Problem 4. Given an information set Jk of CL(P, k), find
polynomials Qj ∈ Fq[x][y]2 for all j ∈ Jk, s.t. Qj(Pj′) =
0,∀j′ ∈ Jk\{j} and deg2,3 Qj is minimal.

It can be observed that Problem 4 comprises k interpolation
problems defined by Problem 1. Each problem differs by one
interpolation point. Thus, Problem 4 can be solved by comput-
ing the k Gröbner bases GJk\{j1}, ...,GJk\{jk}. Consequently,
Qj = G(−)

Jk\{j},∀j ∈ Jk.

IV. FAST CONSTRUCTIONS OF SEP AND SGM

Section III demonstrates that both the SEP and SGM of
CL(P, k) can be derived from the solution of Problem 4,
which is contained in the Gröbner bases GJk\{j1}, ...,GJk\{jk}.
Although applying Algorithm 2 multiple times can yield the
desired Gröbner bases, it results in redundant computation.
This section shows that this redundancy can be eliminated by
exploiting the similarity between these Gröbner bases. Figure
1 illustrates the fast SEP construction, including two key steps:

1) Forward computation: compute a Gröbner basis GJk
of

the module MJk
;

2) Backward computation: utilize the backward interpola-
tion to generate the Gröbner basis GJk\{j} from GJk

and
further derive the SEBP Qj for all j ∈ Jk.

A. Backward Interpolation

The backward interpolation [16] [17] eliminates interpola-
tion constraints from an existing Gröbner basis, yielding a
new Gröbner basis. In this work, it is used to eliminate the

Computing a
Gröbner basis

Backward
Interpolation

Backward
Interpolation

Backward
Interpolation

J𝑘𝑘 𝒢𝒢𝐽𝐽𝑘𝑘

𝒬𝒬𝑗𝑗2

𝒬𝒬𝑗𝑗𝑘𝑘

ℱ

𝑢𝑢1

𝑢𝑢2

𝑢𝑢𝑘𝑘

𝒬𝒬𝑗𝑗1

… …

Fig. 1. Fast SEP construction.

interpolation constraint defined by Pj from GJk
to generate

GJk\{j} for all j ∈ Jk. The problem of backward interpolation
is formulated in Problem 5.

Problem 5. Given a position set J ⊆ {1, 2, ..., n}, a Gröbner
basis GJ of the module MJ and a position j ∈ J , compute a
Gröbner basis GJ\{j} of the module MJ\{j}.

If Q ∈ MJ is divisible by x − αj , then the zeros of Q at
Pj can be reduced through dividing by x− αj , which means
the constraint given by Pj can be eliminated. This provides a
foundation for solving Problem 5.

Proposition 3. Given GJ = {Q(0), Q(1)} and j ∈ J , let
L = {l ∈ {0, 1} : (x − αj) | Q(l)} and Lc = {0, 1}\L. If
L ̸= ∅, let Q̃(l) = Q(l)/(x−αj) for l ∈ L. Then, GJ\{j,s[j]} =

{Q̃(l) : l ∈ L} ∪ {Q(l) : l ∈ Lc}.
Remark 4. If s[j] /∈ J or s[j] = j, then GJ\{j,s[j]} = GJ\{j}

is the solution to Problem 5. Otherwise, GJ\{j,s[j]} ̸= GJ\{j}
and it can be updated to GJ\{j} using Algorithm 1, i.e.,
GJ\{j} = BasisUpdate(GJ\{j,s[j]}, Ps[j]).

Proposition 3 and Remark 4 can solve Problem 5 if L ̸= ∅,
i.e., there exists Q(l) ∈ GJ s.t. (x − αj) | Q(l). Therefore, it
is necessary to determine whether Q(l) ∈ GJ is divisible by
x− αj . For this purpose, a simple criterion can be used.

Proposition 5 ([16]). Given Q(x, y) = Q[0](x)+Q[1](x)y ∈
MJ , (x− αj) | Q iff Q[1](αj) = 0.

If L = ∅, i.e., Q(l)
[1](αj) ̸= 0,∀l, then GJ can be transformed

into another Gröbner basis of MJ with L ̸= ∅. Proposition
6 shows that a linear combination of the elements of GJ can
generate a polynomial Q̄ ∈MJ s.t. Q̄[1](αj) = 0.

Proposition 6 ([16]). Given GJ = {Q(0), Q(1)} and j ∈ J ,
let θ(l)j = Q

(l)
[1](αj) for l = 0, 1. If L = {l ∈ {0, 1} : θ(l)j =

0} = ∅, let Q̄ = Q(0) − (θ
(0)
j /θ

(1)
j)Q(1). Then, Q̄[1](αj) = 0.

Observe that LM2,3Q̄ = LM2,3G(+)
J . Hence, {G(−)

J , Q̄}
forms a Gröbner basis of MJ with L ̸= ∅ and it can produce
GJ\{j} by applying Proposition 3.

B. Fast SEP Construction

The fast SEP construction mainly consists of forward
and backward computations. These computations generate the
SEBPs that satisfy (4). Subsequently, the SEP is substantiated
using both the SEBPs and the message based on (3).

1) Forward Computation: With the input of position set
J , the forward computation yields the Gröbner basis GJ . This
can be achieved directly using Algorithm 2. Furthermore, if the

2023 IEEE International Symposium on Information Theory (ISIT)

2077
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 06,2023 at 01:16:53 UTC from IEEE Xplore. Restrictions apply.

interpolation point set PJ has a semi-grid structure as defined
below, the computation can be expedited.

Definition III ([15]). Given a set of points S ⊆ P , let
A(S) = {α : (α, γ) ∈ S,∀γ ∈ Fq} and Bα(S) = {β :
(α, β) ∈ S} for α ∈ A(S). Then, S is called a (maximal)
semi-grid on P , if |Bα(S)| = 2,∀α ∈ A(S).

Let SJ = {j ∈ J : s[j] ̸= j and s[j] ∈ J}. It can be seen
that the point set PSJ

is a semi-grid on PJ and there is no
other semi-grid on PJ containing PSJ

, except for PSJ
itself.

Choose certain representatives in SJ to form another position
set S∗

J , s.t. A(PS∗
J
) = A(PSJ

) and s[j] /∈ S∗
J ,∀j ∈ S∗

J . It
follows from Proposition 7 that the elements of GJ have a
common factor of QSJ

(x) =
∏

j∈S∗
J
(x− αj).

Proposition 7. Given GJ = {Q(l) : l = 0, 1} and j ∈ J ,
(x− αj) | Q(l),∀l iff {j, s[j]} ⊆ J and j ̸= s[j].

Corollary 8. For any Q(l) ∈ GJ , QSJ
| Q(l).

Based on GJ , by recursively applying Proposition 3 for
every j ∈ S∗

J , GJ\SJ
= {Q(l)/QSJ

: l = 0, 1} can be
obtained. Therefore, the computation of GJ can be divided
into the computations of QSJ

and GJ\SJ
, respectively. The

forward computation is summarized in Algorithm 3.

Algorithm 3: Forward Computation
Input: P, J
Output: GJ

1 Identify SJ and S∗
J from J ;

2 GJ\SJ
= {Q(0), Q(1)} ← KötterInterp(P , J\SJ);

3 QSJ
←

∏
j∈S∗

J
(x− αj);

4 GJ ← {QSJ
·Q(0), QSJ

·Q(1)};

2) Backward Computation: With the input of Gröbner basis
GJk

, the backward computation eliminates the constraint given
by interpolation point Pj from GJk

, yielding GJk\{j} for all
j ∈ Jk. Subsequently, the SEBP Qj is derived from GJk\{j}.
Based on Proposition 7, the backward computation can be
categorized into cases of whether j ∈ SJk

or not.
Case I: For j ∈ SJk

, it holds that s[j] ∈ Jk. Based on
Propositions 3 and 7, GJk\{j,s[j]} can be derived from GJk

as

GJk\{j,s[j]} = {Q̃(l) =
Q(l)

x− αj
: l = 0, 1}. (5)

Let ∆(l)
s[j] = Q̃(l)(Ps[j]). As discussed in Remark 4, GJk\{j} ̸=

GJk\{j,s[j]} and there exists at least one l ∈ {0, 1}, s.t. ∆(l)
s[j] ̸=

0. Hence, GJk\{j,s[j]} can be updated to

GJk\{j} = {F
∆

(0)

s[j]
,∆

(1)

s[j]

(Q̃(0), Q̃(1)), Q(l∗)} (6)

using Algorithm 1, where l∗ = argminl{Q̃(l) : ∆
(l)
s[j] ̸= 0}.

Note that Q(l∗) ∈ GJk
, and thus Q(l∗)(Pj) = 0. According

to constraint (4) in Problem 3, Qj must satisfy Qj(Pj) ̸= 0.
Therefore, Qj = F

∆
(0)

s[j]
,∆

(1)

s[j]

(Q̃(0), Q̃(1)).

The formal derivative of Q(l) can be used to compute the

evaluation ∆
(l)
j = Q̃(l)(Pj) as

Q̃(l)(Pj) =
Q(l)(αj , βj)

(x− αj)(αj , βj)
=

∂Q(l)

∂x
(Pj). (7)

Furthermore, let Λj = Qj(Pj). It can be calculated by

Qj(Pj) = F
∆

(0)

s[j]
,∆

(1)

s[j]

(∆
(0)
j ,∆

(1)
j). (8)

Consequently, Qj = Qj/Λj can be determined.
Case II: For j ∈ Jk\SJk

, it holds that s[j] /∈ Jk. Based on
Propositions 5 and 7, there exists at least one l ∈ {0, 1}, s.t.
θ
(l)
j = Q

(l)
[1](αj) ̸= 0. According to Propositions 5 and 6,

F
θ
(0)
j ,θ

(1)
j

(Q(0), Q(1)) =


Q(0), if θ(0)j = 0 and θ

(1)
j ̸= 0

Q(1), if θ(0)j ̸= 0 and θ
(1)
j = 0

Q̄, if θ(0)j ̸= 0 and θ
(1)
j ̸= 0

must be divisible by x− α. Hence, based on Proposition 3,

GJk\{j} = {
F
θ
(0)
j ,θ

(1)
j

(Q(0), Q(1))

x− αj
, Q(l′)}, (9)

where l′ = argminl{Q(l) : θ
(l)
j ̸= 0}. Similar to Case I,

Qj = F
θ
(0)
j ,θ

(1)
j

(Q(0), Q(1))/(x − αj), and Λj = Qj(Pj) can
be calculated by

Qj(Pj) = F
θ
(0)
j ,θ

(1)
j

(
∂Q(0)

∂x
,
∂Q(1)

∂x
)(Pj). (10)

Algorithm 4 summarizes the backward computation for SEP.

Algorithm 4: Backward Computation for SEP
Input: P, Jk, SJk

, S∗
Jk
,GJk

Output: {Qj : j ∈ Jk}
1 Q

(l)
x ← ∂Q(l)

∂x for l = 0, 1;
2 for j ∈ S∗

Jk
do

3 for l = 0, 1 do
4 Q̃(l) ← Q(l)/(x− αj);
5 ∆(l)(y)← Q

(l)
x (αj , y);

6 ∆
(l)
j ,∆

(l)
s[j] ← ∆(l)(βj),∆

(l)(βs[j]);
7 for j′ = j, s[j] do
8 Λj′ ← F

∆
(0)

s[j′],∆
(1)

s[j′]
(∆

(0)
j′ ,∆

(1)
j′);

9 Qj′ ← F
∆

(0)

s[j′],∆
(1)

s[j′]
(Q̃(0), Q̃(1))/Λj′ ;

10 for j ∈ Jk\SJk
do

11 θ
(l)
j ← Q

(l)
[1](αj) for l = 0, 1;

12 Λj ← F
θ
(0)
j ,θ

(1)
j

(Q
(0)
x , Q

(1)
x)(Pj);

13 Qj ← F
θ
(0)
j ,θ

(1)
j

(Q(0), Q(1))/(Λj(x− αj));

The following is an example demonstrating Algorithm 4.

Example 1. Given an elliptic curve X : Y 2 + Y = X3

defined over F4, its set of affine points P consists of P1 =
(0, 0), P2 = (0, 1), P3 = (1, σ), P4 = (1, σ2), P5 = (σ, σ),
P6 = (σ, σ2), P7 = (σ2, σ) and P8 = (σ2, σ2), where σ is
the primitive element of F4, satisfying σ2 = σ + 1.

2023 IEEE International Symposium on Information Theory (ISIT)

2078
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 06,2023 at 01:16:53 UTC from IEEE Xplore. Restrictions apply.

Given an information set J5 = {1, 2, 3, 5, 8} of elliptic
code CL(P, 5), the Gröbner basis GJ5 can be obtained using
Algorithm 3. It consists of Q(0) = x+ σ2x2 + x3 + σxy and
Q(1) = σ2x+ x2 + (σx+ σ2x2)y. The formal derivatives of
Q(0) and Q(1) are Q

(0)
x = 1 + x2 + σy and Q

(1)
x = σ2 + σy,

respectively.
Since P1 and P2 have the same X-coordinate, SJ5 = {1, 2}.

Based on (5), GJ5\{1,2} can be determined. It consists of
Q̃(0) = 1+σ2x+x2+σy and Q̃(1) = σ2+x+(σ+σ2x)y. By
evaluating Q

(0)
x and Q

(1)
x at P1 and P2, we have ∆

(0)
1 = 1,

∆
(1)
1 = σ2, ∆

(0)
2 = σ2 and ∆

(1)
2 = 1. According to (8),

Λ1 = σ2 and Λ2 = 1. With these results, the SEBPs Q1 and
Q2 can be computed as follows:

Q1 =
Q̃(0) − (∆

(0)
2 /∆

(1)
2) Q̃(1)

Λ1
= 1 + σx2 + (1 + σ2x)y,

Q2 =
Q̃(0) − (∆

(0)
1 /∆

(1)
1) Q̃(1)

Λ2
= x+ x2 + (1 + x)y.

On the other hand, Q(0)
[1] (x) = σx and Q

(1)
[1] (x) = σx+σ2x2.

By evaluating Q
(0)
[1] and Q

(1)
[1] at P3, P5 and P8, we have θ

(0)
3 =

σ, θ
(1)
3 = 1, θ

(0)
5 = σ2, θ

(1)
5 = 1, θ

(0)
8 = 1 and θ

(1)
8 = 0.

According to (10), Λ3 = σ2, Λ5 = 1 and Λ8 = σ. Then, the
SEBPs Q3, Q5 and Q8 can be computed as follows:

Q3 =
Q(0) − (θ

(0)
3 /θ

(1)
3)Q(1)

Λ3(x− α3)
= σx2 + σxy,

Q5 =
Q(0) − (θ

(0)
5 /θ

(1)
5)Q(1)

Λ5(x− α5)
= σx+ x2 + σxy,

Q8 =
Q(1)

Λ8(x− α8)
= σ2x+ σxy.

C. Fast SGM Construction

The fast SGM construction can be derived from the fast
SEP construction mentioned above. It consists of the forward
computation given in Algorithm 3 and a modified backward
computation based on Algorithm 4. For the latter, it is neces-
sary to store the common evaluation results.

Since the SGM GJk
of CL(P, k) with information set

Jk consists of the evaluation images of the SEBPs, i.e.,
E(Qj1), ...,E(Qjk), the entry gi[j],i of GJk

is directly given by
(4) for any j, i ∈ Jk. To compute the other entries efficiently,
the following evaluation results need to be stored:

E = {E(l)
i = Q(l)(Pi) : l = 0, 1; i ∈ Jc

k} (11)

where Jc
k = {1, 2, ..., n}\Jk.

Similar to the backward computation for SEP, the compu-
tation of gi[j],i can be categorized into two cases.

Case I: For j ∈ SJk
, ∆(l)

s[j] and Λj can be calculated by (7)
and (8), respectively. Based on (5) and (6),

gi[j],i =
F
∆

(0)

s[j]
,∆

(1)

s[j]

(E
(0)
i , E

(1)
i)

Λj(αi − αj)
,∀i ∈ Jc

k.

Case II: For j ∈ Jk\SJ , θ(l)j = Q
(l)
[1](αj), and Λj can be

calculated by (10). Based on (9),

gi[j],i =
F
θ
(0)
j ,θ

(1)
j

(E
(0)
i , E

(1)
i)

Λj(αi − αj)
,∀i ∈ Jc

k\{s[j]}.

If s[j] ̸= j, let Λs[j] = Qj(Ps[j]), which can be calculated by
replacing Pj in (10) with Ps[j]. Then, gi[j],s[j] = Λs[j]/Λj .

It can be seen that the above computations can be performed
in parallel, which is advantageous for hardware implementa-
tion.

V. COMPLEXITY ANALYSIS

This section analyzes the Fq-computational complexity of
the proposed SEP and SGM construction algorithm.

1) Forward Computation (Algorithm 3): The complexity is
no greater than computing GJk

using Algorithm 2, which costs
O(2 · |Jk|2) = O(k2) operations [21].

2) Backward Computation for SEP (Algorithm 4): For
j ∈ SJk

, computing Q̃(l) for l = 0, 1 costs O(2 · deg2,3 Q(l))

operations. Moreover, computing ∆
(l)
j and ∆

(l)
s[j] for l = 0, 1

costs O(4 · deg2,3 Q
(l)
x) operations. Note that deg2,3 Q

(l)
x <

deg2,3 Q
(l). With the above results, Λj can be calculated with

O(1) operations. If both ∆
(0)
s[j] and ∆

(1)
s[j] are nonzero, then

Qj = Q̃(0) − ∆
(0)
s[j]/∆

(1)
s[j] · Q̃

(1), of which the computational
complexity is

O(deg2,3 Qj) = O(deg2,3 G
(+)
Jk\{j,s[j]}) ⊂ O(deg2,3 G

(+)
Jk

).

Finally, computing Qj = Qj/Λj also costs O(deg2,3 Qj)

operations. Based on Lemma 2, O(deg2,3 Q(l)) = O(|Jk|) =
O(k) for l = 0, 1. Therefore, the complexity of the above
computations is O(k).

For j ∈ Jk\SJk
, computing θ

(l)
j for l = 0, 1 costs O(2 ·

degQ
(l)
[1]) ⊂ O(deg2,3 Q

(l)) = O(k) operations. Furthermore,
the computations of Λj , Qj and Qj are similar to the case of
j ∈ SJk

. Therefore, the complexity of these computations is
also O(k).

Since there are k SEBPs Qj required to be computed, the
total complexity of backward computation for SEP is O(k2).

3) Backward Computation for SGM: The algorithm starts
with computing the common evaluation results (11), where
each E

(l)
i can be computed with O(deg2,3 Q(l)) = O(k)

operations. Since |E| = 2(n − k), the total complexity of
computing (11) is O(k(n− k)).

Furthermore, ∆
(l)
j (or θ

(l)
j) and Λj need to be computed

for all j ∈ Jk. Similar to the backward computation for SEP,
these computations cost k·O(k) = O(k2) operations. With the
above results, each entry gi[j],i of GJk

can be calculated with
O(1) operations, and thus computing the k(n−k) entries costs
O(k(n−k)) operations. Consequently, the total complexity of
backward computation for SGM is O(k2) + O(k(n − k)) =
O(kn).

ACKNOWLEDGEMENT

This work is sponsored by the National Natural Science
Foundation of China (NSFC) with project ID 62071498.

2023 IEEE International Symposium on Information Theory (ISIT)

2079
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 06,2023 at 01:16:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Justesen, K. Larsen, H. Jensen and et al., “Construction and decoding
of a class of algebraic geometry codes,” IEEE Trans. Inform. Theory,
vol. 35, no. 4, pp. 811–821, Jul. 1989.

[2] G. Feng and T. R. Rao, “Decoding algebraic-geometric codes up to
the designed minimum distance,” IEEE Trans. Inform. Theory, vol. 39,
no. 1, pp. 37–45, Jan. 1993.

[3] S. Sakata, J. Justesen, Y. Madelung and et al., “Fast decoding of
algebraic-geometric codes up to the designed minimum distance,” IEEE
Trans. Inform. Theory, vol. 41, no. 6, pp. 1672–1677, Sep. 1995.

[4] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometry codes,” IEEE Trans. Inform. Theory, vol. 45,
no. 6, pp. 1757–1767, Sep. 1999.

[5] D. J. J. Versfeld, J. N. Ridley, H. C. Ferreira and et al., “On systematic
generator matrices for Reed–Solomon codes,” IEEE Trans. Inform.
Theory, vol. 56, no. 6, pp. 2549–2550, Jun. 2010.

[6] H. Matsui, “Unified system of encoding and decoding erasures and errors
for algebraic geometry codes,” in Proc. Int. Symp. Inform. Theory and
Its App. (ISITA), Taichung, Taiwan, Oct. 2010, pp. 1001–1006.

[7] R. Kötter, J. Ma, and A. Vardy, “The re-encoding transformation in
algebraic list-decoding of Reed–Solomon codes,” IEEE Trans. Inform.
Theory, vol. 57, no. 2, pp. 633–647, Feb. 2011.

[8] Y. Wan, L. Chen, and F. Zhang, “Algebraic soft decoding of elliptic
codes,” IEEE Trans. Commun., vol. 70, no. 3, pp. 1522–1534, Mar.
2022.

[9] J. Bellorado and A. Kavcic, “Low-complexity soft-decoding algorithms
for Reed–Solomon codes—part I: an algebraic soft-in hard-out Chase
decoder,” IEEE Trans. Inform. Theory, vol. 56, no. 3, pp. 945–959, Mar.
2010.

[10] Y. Wan, L. Chen, and F. Zhang, “Algebraic Chase decoding of elliptic
codes through computing the Gröbner Basis,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), Espoo, Finland, Jun. 2022, pp. 180–185.

[11] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes
based on ordered statistics,” IEEE Trans. Inform. Theory, vol. 41, no. 5,
pp. 1379–1396, Sep. 1995.

[12] C. Heegard, J. Little, and K. Saints, “Systematic encoding via Gröbner
bases for a class of algebraic-geometric Goppa codes,” IEEE Trans.
Inform. Theory, vol. 41, no. 6, pp. 1752–1761, Nov. 1995.

[13] H. Matsui and S. Mita, “Encoding via Gröbner bases and discrete Fourier
transforms for several types of algebraic codes,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), Nice, France, Jun. 2007, pp. 2656–2660.

[14] Y. Wan, L. Chen, and F. Zhang, “Guruswami-Sudan decoding of elliptic
codes through module basis reduction,” IEEE Trans. Inform. Theory,
vol. 67, no. 11, pp. 7197–7209, Nov. 2021.

[15] P. Beelen, J. Rosenkilde, and G. Solomatov, “Fast Encoding of AG
Codes Over Cab Curves,” IEEE Trans. Inform. Theory, vol. 67, no. 3,
pp. 1641–1655, Mar. 2021.

[16] J. Zhu, X. Zhang, and Z. Wang, “Backward interpolation architecture
for algebraic soft-decision Reed–Solomon decoding,” IEEE Trans. VLSI
Systems, vol. 17, no. 11, pp. 1602–1615, Nov. 2009.

[17] X. Zhang and Y. Zheng, “Generalized backward interpolation for al-
gebraic soft-decision decoding of Reed-Solomon codes,” IEEE Trans.
Commun., vol. 61, no. 1, pp. 13–23, Jan. 2013.

[18] L. C. Washington, Elliptic Curves: Number Theory and Cryptography,
2nd ed. Boca Raton, FL: Chapman & Hall/CRC, 2008.

[19] T. Høholdt, J. van Lint, and R. Pellikaan, “Algebraic geometry codes,”
in Handbook of Coding Theory, V. Pless, W. Huffman, and R. Brualdi,
Eds. Amsterdam: Elsevier, 1998, pp. 871–961.

[20] K. Lee and M. E. O’Sullivan, “List decoding of Reed–Solomon codes
from a Gröbner basis perspective,” J. Symb. Comput., vol. 43, no. 9, pp.
645–658, Sep. 2008.

[21] R. Kötter, “Fast generalized minimum-distance decoding of algebraic-
geometry and Reed-Solomon codes,” IEEE Trans. Inform. Theory,
vol. 42, no. 3, pp. 721–737, May 1996.

2023 IEEE International Symposium on Information Theory (ISIT)

2080
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 06,2023 at 01:16:53 UTC from IEEE Xplore. Restrictions apply.

